FLUKA simulations of the response of tissue-equivalent proportional counters to ion beams for applications in hadron therapy and space.

نویسندگان

  • T T Böhlen
  • M Dosanjh
  • A Ferrari
  • I Gudowska
  • A Mairani
چکیده

For both cancer therapy with protons and ions (hadron therapy) and space radiation environments, the spatial energy deposition patterns of the radiation fields are of importance for quantifying the resulting radiation damage in biological structures. Tissue-equivalent proportional counters (TEPC) are the principal instruments for measuring imparted energy on a microscopic scale and for characterizing energy deposition patterns of radiation. Moreover, the distribution of imparted energy can serve as a complementary quantity to particle fluences of the primary beam and secondary fragments for characterizing a radiation field on a physical basis for radiobiological models. In this work, the Monte Carlo particle transport code FLUKA is used for simulating energy depositions in TEPC by ion beams. The capability of FLUKA in predicting imparted energy and derived quantities, such as lineal energy, for microscopic volumes is evaluated by comparing it with a large set of TEPC measurements for different ion beams with atomic numbers ranging from 1 to 26 and energies from 80 up to 1000 MeV/n. The influence of different physics configurations in the simulation is also discussed. It is demonstrated that FLUKA can simulate energy deposition patterns of ions in TEPC cavities accurately and that it provides an adequate description of the main features of the spectra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secondary Particles Produced by Hadron Therapy

Introduction Use of hadron therapy as an advanced radiotherapy technique is increasing. In this method, secondary particles are produced through primary beam interactions with the beam-transport system and the patient’s body. In this study, Monte Carlo simulations were employed to determine the dose of produced secondary particles, particularly neutrons during treatment. Materials and Methods I...

متن کامل

Evaluation of dose distribution of 12C ion beam in radiotherapy by FLUKA as a Monte Carlo simulation Code

Introduction: Nowadays, the use of heavy ion beams in cancer therapy have been developed worldwide.   Materials and Methods: It requires accurate understanding of the complex processes of ion interaction with matter, as it is the calculation the relative dose & range of these ions in matter. In the present study we used FLUKA as a numerical Monte Carlo simula...

متن کامل

Evaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code

Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...

متن کامل

Comparison of the Light Charged Particles on Scatter Radiation Dose in Thyroid Hadron Therapy

Bachground: Hadron therapy is a novel technique of cancer radiation therapy which employs charged particles beams, 1H and light ions in particular. Due to their physical and radiobiological properties, they allow one to obtain a more conformal treatment, sparing better the healthy tissues located in proximity of the tumor and allowing a higher control of the disease.  Objective: As it is well ...

متن کامل

Calculation of total dose and dose equivalent distribution in the treatment of lung cancer using MR-guided carbon therapy

Nowadays, in order to improve the accuracy of treatment in radiation therapy, there are many attempts to use magnetic resonance imaging (MRI) due to the advantages of excellent soft tissue contrast and ultra-fast pulse sequences. On the other hand, carbon-ion radiation therapy is developing rapidly due to the benefits of greater relative biological effectiveness (RBE) and the application in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 56 20  شماره 

صفحات  -

تاریخ انتشار 2011